Quality estimation through attention
Tartu : University of Tartu Press, 2022
114 lk.
Pehmeköiteline ja väga heas korras.
Doktoritöö: Masintõlge on saanud osaks mitte ainult keeleteadlaste ja professionaalsete tõlkijate, vaid peaaegu kõigi elust. Enamik inimesi, kes on kasutanud masintõlget, on kohanud naljakaid ja kohati täiesti valesid tõlkeid, mis lause tähendust täielikult moonutavad. Seega peame peale masintõlke mudeli kasutama hindamismehhanismi, mis teavitab inimesi tõlgete kvaliteedist. Loomulikult saavad professionaalsed tõlkijad masintõlke väljundit hinnata ja vajadusel toimetada. Inimeste märkuste kasutamine veebipõhiste masintõlkesüsteemide tõlgete hindamiseks on aga äärmiselt kulukas ja ebapraktiline. Seetõttu on automatiseeritud tõlkekvaliteedi hindamise süsteemid masintõlke töövoo oluline osa. Kvaliteedihinnangu eesmärk on ennustada masintõlke väljundi kvaliteeti, ilma etalontõlgeteta. Selles töös keskendusime kvaliteedihinnangu mõõdikutele ja käsitleme tõlkekvaliteedi näitajana tähelepanumehhanismi ennustatud jaotusi, mis on üks kaasaegsete neuromasintõlke (NMT) süsteemide sisemistest parameetritest. Kõigepealt rakendasime seda rekurrentsetel närvivõrkudel (RNN) põhinevatele masintõlkemudelitele ja analüüsisime pakutud meetodite toimivust juhendamata ja juhendatud ülesannete jaoks. Kuna RNN-põhised MT-süsteemid on nüüdseks asendunud transformeritega, mis muutusid peamiseks tipptaseme masintõlke tehnoloogiaks, kohandasime oma lähenemisviisi ka transformeri arhitektuurile. Näitasime, et tähelepanupõhised meetodid sobivad nii juhendatud kui ka juhendamata ülesannete jaoks, kuigi teatud piirangutega. Kuna annotatsiooni andmete hankimine on üsna kulukas, uurisime, kui palju annoteeritud andmeid on vaja kvaliteedihinnangu mudeli treenimiseks.
Kokkuvõte eesti keeles
Sari: Dissertationes informaticae Universitatis Tartuensis ; 35.